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Analytical Series Expressions for the Self- and 
Mutual Inductances of Two-Dimensional Coils 

in the Form of Partial Sectors 

Venkataraman THIAGARAJAN 

Abstract-Pvlsed power generators of the drum type utilize 
radial components of magnetic fields created by field coils located 
on a rotor to induce voltage on stator coils located at larger radii. 
Conventionally, two-dimensional field analyses are used, and 
further, the field is expressed as a harmonic series and the 
fundamental part of the radial field is used for initial designs. 
Analytical series expressions for two-dimensional potentials and 
fields are utilized in this paper to derive analytical series 
expressions for the self-inductances and mutual inductances 
between the rotor and stator coils in the shape of partial sectors. 
The magnitudes of higher order terms are compared with that of 
the fundamental component. The effects of parameters such as 
the aspect ratios of conductor sections on the inductances and 
coupling constants are evaluated. 

I.   INTRODUCTION 

PULSED power generators are conventionally of two 
types. The disk type generators utilize axial fields to 

generate voltage, while the drum type utilize radial fields for 
the same purpose. The magnetic energy stored, due to currents 
flowing in the field coils usually located on the rotor, is 
transferred to the load through currents induced in the stator 
coils. The process of storing energy and induction of load 
currents may be described by the self- and mutual inductances 
of the coils and the coupling constants which are functions of 
the inductances. Generally, three-dimensional magnetic field 
calculations are required for the computation of inductances. 
Two-dimensional calculations might suffice for initial designs 
of the drum type, since the fields are approximately two- 
dimensional in the central portions of the machine. Further, 
the fields could be expanded in harmonic series, and initial 
designs normally use just the fundamental component of the 
magnetic field to arrive at optimal designs. The locations of 
the conductors and their aspect ratios will affect the 
inductances and magnitudes of the higher order fields. 

Methods for the calculation of inductances exist in literature 
[l]-[4]. Hughes and Miller [2], Bird and Woodson [3], and 
Parekh [4] address the inductances of two-dimensional coil 
sections of interest (partial sectors) in pulsed power generators 
utilizing radial fields for generation. Hughes and Miller [2] 
derived expressions for the inductances of partial sectors. 
They assumed sinusoidal current sheet sources and truncated 
series expressions (with just ten coefficients) for fields 
consistent  with  the   solution  of Laplace's  equation  and 

evaluated the coefficients with boundary and interface 
conditions. Their results presented in a tabular form are not 
readily adaptable for parametric analyses. Bird and Woodson 
[3] and Parekh [4] have presented expressions for similar 
inductances which are amenable to parametric evaluations. 
But they have made the following simplifying assumptions in 
their analyses, specific for their application, limiting general 
validity: (1) the source is described by current sheets with 
sinusoidal distribution, (2) the azimuthal magnetic field has 
been assumed to be zero at the radius of the rotor, and (3) the 
radial magnetic field has been assumed to be zero at the outer 
radius of the stator. 

In this paper, drum type generators with coil sections in the 
form of partial sectors bounded by given radii and azimuthal 
angles have been analyzed in two dimensions. The magnetic 
energy stored is calculated using an integral of the dot product 
of the current density and the vector potential over the finite 
sections of the conductors. Two-dimensional series fields 
have been utilized to derive analytically the self- and mutual 
inductances and the coupling constants as converging series. 
No simplifying assumptions and series truncations have been 
made, and exact analytical series expressions have been 
derived. Sinusoidal distribution of sources was an essential 
input for the analyses in the works described earlier. The 
expressions presented in this paper are valid for general 
distribution of source conductors (symmetric, asymmetric, or 
sinusoidal). The expressions for the inductances presented are 
in a form suitable for parametric analysis, evaluation of the 
effect of aspect ratios and conductor placement, etc., in initial 
two-dimensional designs. The inductances and coupling 
constants have been evaluated as functions of the coil locations 
and aspect ratios of coil sections. The effects of higher order 
terms on the inductances are evaluated. 
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Fig. 1. Schematic coil sections. 

II.   DESCRIPTION OF THE PROBLEM 

A typical drum type generator is shown Fig. 1. The rotor is 
of radius ai, and the stator is located at a larger radius bi. The 
rotor coils are bounded by radii ai and a2. The coil in the first 
quadrant varies from <|>i to <t>2. The data for the coils in the 
other regions may be specified by similar data. If the 
arrangement is symmetric, the azimuthal spreads of the rotor 
coils in the other quadrants can be obtained utilizing 
symmetry; otherwise, they will have to be specified as data. 
Stator coils are bounded by radii bi and b2. The coil in the 
first quadrant is bounded by angles 61 and 82. As before, the 
data for the coils in the other quadrants can be specified 
individually for general cases and obtained using symmetry, in 
symmetric arrangements. The configuration shown is a 
quadrupole with currents flowing in opposite directions in 
successive quadrants. The data may be specified similarly for 
higher order poles. The objective is to derive analytical 
convergent series expressions for the self-inductances, mutual 
inductances, and the coupling constants as functions of the 
radii, the azimuthal angles, and the number of poles. The 
series will be used to analyze parametrically the effects of 
aspect ratios and radial spreads on the inductances. The 
analytical expressions may easily be generalized to 
configurations with many layers of coils and conductors 
divided into sub-sections with intervening insulators. 

III.  GOVERNING EQUATIONS 

We will use conventional electromagnetic notation. The 
energy stored in the magnetic field set up by a system of 
current loops is given by 

-if"" dv. (1) 

This expression for energy may also be written as follows 
using the vector potential A [5]: 

W = -\j»Adv + - UxH»ds. (2) 

The first integral in (2) will be restricted to the volume of 
the conductors, since the current density elsewhere will be 
zero. The second integral over the bounding surface will 
reduce to zero as the domain extends to infinity. The total 
energy may be obtained using (1) with an infinite domain, or 
using (2) with the integration domain restricted to those of the 
current carrying conductors. Equation (2) simplifies to: 

W ■\i /•Adv. (3) 

The integral in (3) will reduce to integration in two 
dimensions (r,6), considering unit depth along the z direction. 
Two-dimensional fields can be described by just the z 
component of the potential A. 

A = e, A,;  B = VxA (4) 

The current densities are considered uniform here. Using 
Fig. 1, the potential Az at a field point (r,6) due to a current 
source I=jr.a.da.d<|) located at the source point (a,<|>) may be 
written down using Ampere's circuital law. This expression 
for the potential may be expanded in a convergent series, using 
logarithmic expansions [6]-[8]. Two cases arise, depending on 
whether the field radius, r, is greater or less than the source 
radius, a. These two series may be integrated term by term 
over the source radius a, varying from ai to a2 and angles fa to 
fa, to obtain the potential due to a single coil section. The 
fields due to other coil sections may be calculated with limits 
on the radii and the angles specified individually for 
asymmetric cases, or, simplified in symmetric cases. The 
stored magnetic energy may then be calculated using (3). The 
complete derivation is shown in appendices A and B. The 
integrated results from these appendices will be used in the 
following sections with appropriate integration limits. 

IV.   EXPRESSIONS FOR THE INDUCTANCES 

A generator with p number of poles and single layers of 
coils in the rotor and stator will be considered in the following 
derivation. A four-pole machine is shown in Fig. 1. The 
results may easily be extended to more complicated cases by 
extending the summations. The total vector potential at the 
field point (r,0) with sources located between radii a2 and ai, 
and azimuthal spread fa and fa, can be written down using 
equations B.4 and B.5 as follows, after applying the limits a2 



and a! on the source radius a, and <|)2and (^ on the angle <]). 
The angles of displacement of coil sections (referred to the 
first section), Om, will be specified by the design in asymmetric 
cases or by mirror symmetry ((5) below). If the individual coil 
sections are located centrally in successive sectors (total p), 
then 

where the source radii are larger than the field radii. The 
mutual inductance can be related to the energy stored through 
the following equation [5]. 

W   =—MI I (9) 

^2n 
am=(m-l)— 

p 
(5) 

2n  £fnV(n + 2) 
r   n+2 n+2-.* [a2    -ax    ]* 

£(-Dm+1 
[sin n(a_+0,-0) (6) 

m=l 

- sin n(am + fa - 0)]    for  r>a2>ax 

-n+2x 
MoJr V r    f(a2        ~al       ), * 
ln   tf»2 (-n + 2) 

i<-D 
m+l [sinn(am+<t>2-e) (7) 

m=l 

- sin n(am + fa- 0)]     for r < &l < a2 

The current density, j, has been denoted with a subscript r, 
since the source is located on the rotor in our case. The term 
inside the curly parentheses in (7) becomes indeterminate for 
n=2 and may be evaluated using L'Hospital's rule to be 
[ln(ai/a2)]. The fields Br and B9 at any point may be obtained 
using (4). 

A.   Mutual Inductance 

Derivation of the series expression for the mutual 
inductance is straightforward and will be addressed first. 
Referring to Fig. 1, the stator coil is located between radii b2 

and bi (b2>bi>a2>ai) and has an azimuthal spread 02 to 9i 
(92>9i). The energy stored can be calculated using (3) and (6). 
The energy corresponding to the mutual induction between the 
rotor coils and the stator coil section in the first quadrant (Fig. 
1) carrying a current density, js, can be obtained by integrating 
(3) over the section of the stator coil with J=js and the potential 
A given by (6). The current density in the stator coil has been 
denoted with a subscript s to distinguish it from the current 
density in the rotor coils, jr. The limits for integration on r will 
be bi and b2, and those on 6 will be 9] and 92. The result is, 

„n+2     „n+2-. -n+2     t,-n+2i 
w. > -&., if 1M -«QTfflr'-try 

m    4itJ,J'£li?       (n + 2) (-n + 2)      J 

J(-l)m+1[cosn(am + (*2-ö2)-cosn(am + (ü2-e1) 
(8) 

l 

- cos n{am + ft - 02) + cos n{ccm + ft - &{)] 

A similar expression may be derived using (7) for cases 

The mutual inductance is indicated by M, and the Fs refer to 
the currents. The right hand side of (9) would be multiplied by 
2 if the energy on the left hand side were to include the mutual 
inductive energy two ways, rotor to stator and stator to rotor. 
The currents are expressed as follows in terms of the current 
densities and sectional areas: 

/r = ;r(«22-«i2)(02-0i)/2 

Is=js(b2
2-b1

2)(92-ei)/2. 

(10a) 

(10b) 

Using (8) to (10), we derive the expression for the mutual 
inductance (in Henries/m) to be 

M 
In (b}-b?)(e2-eo (a2.-a2)(<t>2-<h) 

/„n+2     „n+2-,        /•L-n+2     L-n+2-, (a2    -a1    ) ^ {b2      -t\      )., 
(11) (n + 2) (-n + 2) 

£(-l)m+1[cosn(am +<p2 -62)-cosn(am+<p2 -8X) 
m=l 

-cosn(am + ft -92) + cosn(am + ft -0,)]. 

The second term in square brackets after the first summation 
in (8) or (11) becomes indeterminate for n=2. Applying 
L'Hospital's rule, it is found to be [-ln(bi/b2)]. It should be 
noted that (11) gives the mutual inductance for just one stator 
coil section. For the case shown in Fig. 1, this value should be 
multiplied by 4 for all the sections. If there is no symmetry, 
(11) will have to be applied for every section with appropriate 
limits on the radius, b, and azimuthal angle, 9, and the results 
summed up to obtain the net mutual inductance. Equation (11) 
is a general expression for the mutual inductance, M, as a 
function of the radii and azimuthal angles. If the stator coils 
are arranged in more than one radial layer, additional terms 
should be included. 

B.   Self-Inductance 

The potentials or fields for radii bounded by the inner and 
outer radii of the rotor conductors, i.e., in the region a2>r>ah 

are needed for the evaluation of the self-inductances. These 
will have to be obtained differently, as shown in Appendix B, 
using equations B.4 and B.5. This region can be divided into 
sub-regions for the evaluation of the vector potential: the first 
region bounded by a^ and r, and the second region bounded by 
r and a2. The potential at (r,0) will be given by the sum of: (1) 
potentials contributed by sources between ai and r, and (2) 



potentials contributed by sources between r and a2.  The 
resulting expression for Az is 

fkiJr V   1   ,r    1     /-2     V 

+ [-Lr(«2"'+V-r2)]}* 
-n + 2 

(12) 

£(-l)m+1[sinn(am + <t>2 - 6) - sin«(«„+*-0)]. 

As before, am is given by (5) for symmetric cases, and will 
have to be specified as data for general cases. The second 
term within the curly parentheses in (12) will become 
indeterminate for n=2. This can be determined by applying 

L'Hospital's rule to be = - r2 ■ \n(r/a2) ■ The energy stored, 

Ws, through self-induction can be obtained by using (3) and 
(12). The I will be given by (jr.r.dr.d0), and the limits on r and 
0 will be ai to a2 and 0i to 02. 

        1 r(aW) 
-a2)2^-^)2^, 

n+2r„-n+2      „-"+2\       „~n+2,n+2      „n+2 

.ßo 8 
'^{al-al)2^-^)1^ 

Y    '    r(a2~' 
±f*3    4(n + 2) 

t,-n+&      „-"+*\       ~-n+L,   n m    (02      -fl,      )    a2     (a2 

(n + 2)(-n + 2) 
ai    )    (a2-ai) j» 

(n + 2)(-n + 2)       4(-n + 2) 

2/-D    [cosn(am + & -02) -cosn(arm + fc -<?,)- 

cosn(am + ft - 02) + cos n(am +0,-0,)]. 

(15) 

The expression within the first square brackets should be 
replaced by (13a) for n=2. It can be shown easily [7] that for a 
symmetric dipole, terms with n=l,3,5,7...etc. survive, and the 
rest will be zero; for a symmetric quadrupole, terms with 
n=2,6,10,14...etc. alone survive; and so on for higher order 
poles. Equation (15) gives the self-inductance in Henries/m. 
The coupling constant K is given by [5], 

K = 
M 

J(LrLs) 
(16) 

w   _ MpJr    y   'r("2   -°l) 
■"n3     4(n + 2) 

n+2,     -n+2 -n+2* 
a\     (a2       ~

ai      ) 

An 

n+2. — llTt., 

n=\ ' 

n+2 

(n + 2)(-n + 2) 

(n + 2)(-n + 2) 
Nin+l 

n+2x      ,4 4, 
flj )    (a2  -Qi ) (13) 

4(-n + 2) 

^ (-l)m+1 [cosn(am +<p2 -62)-cosn(am +<j>2 -0,)- 
^        cosn(orm + fa-62) + cosn(am +<t\-6{) ]. 

The limits 02,0, will be equal to <t>2,(|>i for the first coil 
section. The value obtained from (13) should be multiplied by 
4 for the case shown in Fig. 1. If there is no symmetry, (13) 
should be applied to every coil section with appropriate limits 
and the values for Ws summed. When n=2, the terms within 
the first square brackets should be replaced by 

n+2 (a2  -ax ) 

4(n + 2)       (n + 2) 

flh  ,   (fl2    -Al   ) ln(-^-) + 
16 

(a2
4ln(a2)-a1

4ln(a1))    (a2
4-ai4), ,au , 

 A + A ln(—> ] 

4 4 a, 

(13a) 

The  energy  stored  through  self-induction  can  also  be 
expressed as [5] 

W. =-Ll2 (14) 

where the current, Ir, is given by (10a). Therefore, the 
expression for the self-inductance, L, of a coil with inner and 
outer radii, ai,a2, and azimuthal spread, <|>i,<t>2, and with an 
angular displacement of coils, am, between poles becomes 

K may be obtained using (11), (15), and (16). An 
approximate expression for K may be obtained by using the 
fundamental components alone—i.e., by restricting the 
summation to just n=l for a dipole and n=2 for a quadrupole, 
etc. It should be noted that the angle of displacement, am, will 
be given by (5) for symmetry and will have to be specified as 
data for general cases. It could also be different for different 
layers, the rotor, and the stator. 

V.   COMPARISON WITH FINITE ELEMENT 
SOLUTIONS 

Equations (11) and (15) give analytical expressions for the 
mutual and self-inductances. These may also be calculated 
numerically using finite elements or other numerical 
procedures. The code Opera2d [8] was used to compute the 
fields and stored energy for some sample cases. One quadrant 
of a quadrupole configuration (Fig. 1) was analyzed with 
Opera2d with a coil with an azimuthal spread of 10° to 80°, 
inner radius of 0.3 m, and outer radii varying from 0.32 m to 
0.44 m. The current density input was 1.0E7 A/m2. The outer 
boundary was set at a radius of 3.0 m. The fields were 
analyzed and the energy stored per quadrant computed using 
Opera2d and also (13). The results are shown plotted in Fig. 
2. The differences between the computed and analytical 
results are found to be negligible. 

As a second example, two coil sections in a quadrant of a 
quadrupole configuration were analyzed. The inner coil was 
set with a,=0.3 m, a2=0.34 m, <t>i=10°, and <|>2=80o. The outer 
coil was set with bi=0.38 m, b2=0.46 m, 9i=0°, and 02=5O°. 
The current density in the coils was set at 1.0E7 A/m2. Five 
different cases were analyzed with the outer coil rotated by 10° 
for every case. For each case, three different analyses were 
carried out: (1) inner coil energized (energy W,), (2) outer coil 
energized (energy W2), and (3) both coils energized (energy 



W3). Wi,W2 correspond to the self inductances of the inner 
and outer coils respectively. The value Wm = (W3-Wi-W2)/2 
corresponds to the mutual inductance between the coils [5]. 
The value of Wi = 2698.5 J/m, computed using Opera2d, 
matches the value 2698.0 J/m computed using (13). W2 and 
Wm vary with angle. Wra is shown plotted in Fig. 3 and 
compared with analytical results from (8). The maximum 
difference is found to be less than 4%, which is the accuracy 
achievable with finite element solutions. 
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may be used to optimize design parameters parametrically. As 
an example, the quadrupole configuration shown in Fig. 1 has 
been analyzed varying the dimensions of the coil. The radial 
thickness of the rotor coil was varied, and the azimuthal spread 
of the coil was reduced, while keeping the sectional area 
constant. The dimensions of the stator coil were maintained 
constant. The increase in the radial thickness of the rotor coil 
divided by the initial radial thickness is described as the 
normalized aspect ratio (or just "aspect ratio") in the 
following. The self- and mutual inductances and the coupling 
constants were computed for aspect ratios ranging from 1 to 
1.1. The inductances are shown plotted in Fig. 4 and the 
coupling constants are shown in Fig. 5 plotted against the 
aspect ratios. The self-inductance of the rotor coils is found to 
increase from 0.68 to 1.12 (iH, while the mutual inductance 
drops from 0.44 to 0.27 |iH. The self-inductance of the stator 
coil remains constant at 0.68, since its section is maintained 
constant. The resulting coupling constant decreases from 0.64 
to 0.31 when the aspect ratio of the rotor coil is varied from 1 
to 1.1. 

In a similar fashion, the section of the rotor coil was 
maintained constant and the radial thickness of the stator coil 
was varied, keeping the sectional area constant. The computed 
results are shown in Figs. 6 and 7. The coupling constant with 
a value of 0.64 at an aspect ratio of 1.0 increases slightly to 
0.66 and then decreases to a value of 0.52 at an aspect ratio of 
1.1. The inductances and coupling constants are predominantly 
governed by the fundamental component of the symmetric 
quadrupole. The second harmonic with n=6 decreases by a 
factor of about 27 when compared with the fundamental. 
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Fig. 4. Inductance vs. aspect ratio (rotor coil). 
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Fig. 3. Comparison of energies stored through mutual induction. 

VI.  PARAMETRIC ANALYSES 

Equations (11) and (15) are analytical expressions for the 
inductances as functions of the geometrical parameters. They 
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VII.   SUMMARY 

Analytical series expressions for the self-inductances and 
mutual inductances as a function of the azimuthal angle have 
been derived for two-dimensional coils in the form of partial 
sectors located on circular peripheries in drum configurations. 
The values calculated with the present expressions have been 
checked with two-dimensional finite element computations. 
These expressions will be useful in initial parametric designs 
and the assessment of the effects of harmonics in drum type 
alternators. 
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APPENDIX A 

The formulae for the two-dimensional potentials and fields created by conductors in the form of partial sectors bounded by inner 
and outer radii a!,a2, and angles <|>i,<t>2, have been derived in this appendix. The magnetic field B is related to the vector potential 
A by the following equation: 

5     _    -    Ä 1 dAz     Ä ,-BA.. 

r ad or 

Two-dimensional fields can be described by just the z component of the potential A. 

(A.1) 

A = ezAz (A.2) 

The field Be at a point F(r,0) around a conductor located at a point S(a,(j>) and carrying a differential current = I = j.a.da.d<)> is 
given by the following equation. Let the radial co-ordinate from the source point S be R. Then, 

B   =   A>7 =   oAz 
9      2nR       aR 

The following expression for the potential can be obtained by integrating once over R. 

In In 

The radial distance R can be expressed in terms of the global source and field co-ordinates as follows. 

R2 = r2 + a2 - 2ar cos(0 - 6) 

Therefore, the expression for the potential can be written as follows. 

A =^-\n(r2+a2-2arcos(</>-d)) 
An 

(A3) 

(A.4) 

(A.5) 

(A.6) 

The current I could be replaced by j.a.da.d<|> for further integrations (j being the current density). The components of the magnetic 
fields could be obtained using A.6 and A.l. 

The logarithmic expression in A.6 could be expanded in series and two cases arise depending on whether the field radial co- 
ordinate r is greater or less than the source radial co-ordinate a. 
Case I (r > a): 

A.6 can be re-written for this case as follows: 

An 

.    a      2a      ,,    _. 
1 + —; COS(0-0) 

The expression within the curly parenthesis may be re-written as follows with i = \ — 1 [1,2] 

^ln(r)-^-ln 
2n An 

l--exp(i(0-0))]*[l--exp(-i(0-0)) 
r r 

(A.7) 



The logarithmic expressions may be expanded using the series for ln(l-x) and A.7 may be expanded as follows using the de 
Moivre's theorem. 

A,=-Oi.in(r) + M 
In In 

-cos(0-0) + -^-cos 2(0-0) 
r 2 r 

+ cosn(0-0) + . 
n r" 

(A.8) 

The series expressions for the field components Br, Be follow using A. 1 

ßr=^Rsin(0-0) + ^sin2(0-0) + .... + -^rsinn(<z)-0) + ... (A.9) 

B -M + M ±cos(0-0) + ^cos2(0-0) + .... + 4JrCosn(0-0) + .. 
2nr    In   r r r 

(A. 10) 

Case II (r<a): 

A.6 can be written as follows for this case: 

An 
In a' 

r      2r 
1 + —r COS(0-0) 

a       a 

The above equation may be re-written as: 

A=_Min(a)_Min 
^      2n An 

l--exp(f(0-0))]*[l-IexpH(0-0)) 
a a 

(A. 11) 

As in the previous case, the logarithmic expressions may be expanded in series and de Moivre's theorem applied to get: 

A =—*Mn( <*) + -**- 
z      2n 2n 

—cos( </>-0) + —^r-cos 2(0-0) + ... 
a 2a2 

1 rn 

+ cos n(0-0) + .... 

(A.12) 

The series expressions for the field components Br,Be are obtained using A. 1 

„n-i 
5r=i^J-sin(0-0)+r   in2(0-0) + .... + -^sinn(0-0) + ...j 

2n \a a a 
(A.13) 

Be = -^1 -cos(0 -0) + 4-cos 2(0-0) + . ... + -^rcosn(0-0) + ... 
2n \ a a a" 

(A. 14) 



APPENDIX B 

The energy stored in the magnetic field set up by a system of current loops is given by 

Wm=-\ B*H dv (B.l) 

This expression for energy may also be written as follows using the vector potential A [3]: 

If If 
Wm =-   J«Adv +-\ AxH «ds (B.2) 

The first integral in B.2 will be restricted to the volume of the conductors, since the current density elsewhere will be zero. The 
second integral over the bounding surface will reduce to zero as the domain extends to infinity. The total energy may be obtained 
using B.l with an infinite domain, or using B.2 with the integration domain restricted to those of the current carrying conductors. 
Equation B.2 simplifies to: 

1 f 
Wm=-\ /»Adv (B.3) 

2 

The current densities in the conductors treated in this paper will be uniform, but could have different values for the source and 
field conductors. They will be denoted by jr, js respectively. The energy will be obtained per unit length of the conductors, and 
therefore the integration will be carried out with dv=a.da.d(|). As seen from equations A.8 and A. 12, the vectors J and A are 
parallel. The integration domain can be divided into two regions: region I with the field point radius r > a (source point radius) 
and region II with r < a. Az for region I can be obtained as follows using equation A.8. The first term will be ignored, since 
pairs of conductors with opposing currents will be considered. The current I will be replaced by jr.a.da.d<j). The integral is 

\ =JlETZ-  {t,-^cosnW-9)\ a dad^ 
271      U=1"r J (B.4) 

n+2 

= MvJ_iJ_sinn(^ö) 
In fin2 rn (n + 2) 

In region II where r < a, an equation for Az may be derived in a similar fashion. The result is 

'WJT^  \f,-^osn(0-e)\adzd<p 
2n     I tl n a 

n       „-n+2 

1 rn 

cosn((j)-U) >a aaa<p 
(B.5) 

2n tin2 (-n + 2) 

Appropriate limits on the radial coordinate a and the angular coordinate (j) should be applied in equations B.4 and B.5, depending 
on the spatial extent of the source coils. When the coil consists of more than one section, a summation over the trigonometric 
terms should be included in equations. B.4 and B.5. The resulting equations will yield the potential Az as functions of the field 
coordinates r and 9. These may be substituted in equation B.3 and integrated over the spatial domain of the field conductors to 
obtain the magnetic energy stored. 
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